miércoles, 30 de octubre de 2013

LIOFILIZACION

INTRODUCCION
La liofilización es un proceso de conservación mediante sublimación utilizado con el fin de reducir las pérdidas de los componentes volátiles o termo-sensibles. Es el más noble proceso de conservación de productos biológico conocido, porque aún a los dos métodos más fiables de conservación, la congelación y la deshidratación. Sin conservantes o productos químicos, es el proceso más adecuado para preservar células, enzimas, vacunas, virus, levaduras, sueros, derivados sanguíneos, algas, así como frutas, vegetales, carnes, peces y alimentos en general. En este proceso de secado los productos obtenidos no se ven alterados en sus propiedades y se rehidratan fácilmente.
Un proceso rudimentario de liofilización fue inventado por los incas para la fabricación del chuño (papa liofilizada) y charqui (carne de llama), 200 años a. C y aprovechado posteriormente por los vikingos para la conservación del pescado arenque. A mitad del siglo XIX reaparece en escena este procedimiento por la necesidad de conservación de tejidos animales y vegetales debido a los trabajos de Pasteur y otros científicos. En 1943 el profesor Alexander Fleming le atribuyó formalmente el nombre de liofilización a éste proceso.
LIOFILIZACION
La liofilización es un método de conservación de alimentos en el que confluyen distintos procesos. El resultado es un producto seco, pero con todas las características organolépticas de su estado original, como el aroma, el gusto o el sabor. Alimentos "instantáneos" como frutas finas, sopas, café o comidas que utilizan los astronautas en las misiones espaciales son algunos de los productos que se liofilizan. Este proceso facilita su conservación y ayuda a detener el crecimiento de patógenos, puesto que el resultado es un alimento de menos peso.
En la industria alimentaria, la liofilización consiste en eliminar el agua de un alimento a partir de la congelación, en lugar de aplicar calor. Esto explica que se reserve para los productos con sustancias sensibles a las altas temperaturas, como las proteínas o las enzimas. Una vez liofilizados, el tiempo de conservación sin refrigeración aumenta porque la reducción del contenido de agua inhibe la acción de los microorganismos patógenos que podrían deteriorar los alimentos. En definitiva, la liofilización es similar a la deshidratación: el objetivo es el mismo, disminuir el contenido en agua. La principal diferencia está en el proceso; si bien en el primero se reduce casi la totalidad del agua, en la deshidratación, esta disminución es menor, aunque no por ello menos importante. Este sistema ya se usaba en la antigüedad, cuando para deshidratar los alimentos se dejaban secar al sol, en un ambiente seco, hasta que eliminaran toda la humedad.
La deshidratación por congelación, en cambio, aligera el peso del alimento, con una disminución de un 20% respecto al original. Por este motivo, su uso se ha generalizado en el desarrollo de alimentos destinados a expediciones, ya que permite a los excursionistas o astronautas llevar más cantidad de comida con menos peso y, además, con la posibilidad de reconstituirla con agua. Se liofilizan ciertas frutas para cereales, que mantienen el 98% de las propiedades naturales, sopas instantáneas, hierbas y especias y café. Otros alimentos, como la sandía o la lechuga, son malos candidatos a la liofilización porque tienen un contenido en agua demasiado alto.
Proceso
La deshidratación por congelación permite la separación de las distintas sustancias de un alimento. Primero se congela el producto a muy bajas temperaturas de forma rápida para evitar que se formen grandes cristales de hielo; se somete a un proceso de vacío para que el agua se evapore sin pasar a estado líquido (este procedimiento se conoce como sublimación); se aplica calor al producto congelado y se condensa para convertirlo de nuevo en sólido.
Al no pasar el agua por un estado líquido, se mantienen todas las propiedades de color y aroma, pero en forma seca y con una mayor sensibilidad a los golpes. Cuando el alimento se quiere consumir, hay que rehidratarlo durante unos cinco minutos en agua caliente. La mayoría de los productos que se liofilizan se componen en gran parte de agua (algunas frutas contienen entre un 80% y un 90%). Eliminarla facilita el control de los patógenos, que encuentran en este líquido un medio incondicional para sobrevivir y expandirse, a la vez que alarga su conservación sin necesidad de que se mantenga la cadena del frío.
ETAPAS DE LA LIOFILIZACION:
La liofilización involucra varias etapas:
. Congelación (y acondicionamiento en algunos casos) a bajas temperaturas.
. Secado por sublimación del hielo (o solvente congelado) del producto congelado generalmente a muy baja presión
. Almacenamiento del producto seco en condiciones controladas.


APLICACIONES

Por regla general, la liofilización da lugar a productos alimenticios de más alta calidad que con cualquier método de secado. El factor principal es la rigidez estructural que se preserva en la sustancia congelada cuando se verifica la sublimación. Esto evita el colapso de la estructura porosa después del secado. Al añadir agua posteriormente, el producto rehidratado retiene la mayor parte de su estructura original. La liofilización de materiales biológicos y alimenticios también tiene la ventaja de que conserva su sabor o aroma. Las temperaturas bajas que se emplean reducen al mínimo las reacciones de degradación que casi siempre ocurren en los procesos comunes de secado. Sin embargo, el secado por congelación es una forma de deshidratación de alimentos bastante costosa, debido a la velocidad lenta de secado y a la necesidad de usar vacío.
La primera aplicación de la liofilización reportada por R. Altman (1890), quien utilizó un sistema similar a la liofilización, fue la preservación de tejidos animales. B. W. Hammer (1911), comprobó la posibilidad de preservar bacterias utilizando el método de Shackell.L. A. Roger (1914), reportó el uso del proceso de liofilización para preparar grandes cantidades de ácido láctico; y en 1958 se aplicó al sector alimentario enfocándose solamente a unos pocos alimentos, como la leche, las sopas, los huevos, la levadura, los zumos de frutas o el café. Oscar Cuper (1965), aplicó la liofilización a diferentes alimentos, (carnes, frutos de mar, hortalizas, infusiones). J. Alvarado (1979), aplicó los principios de liofilización atmosférica (sin vacío), a diferentes variedades de papa.
La mayor aplicación de la liofilización está en el campo farmacéutico (comprimidos, tejidos, plasma, sueros y otros productos biológicos), en la industria química para preparar catalizadores, seguida del secado de materiales orgánicos como madera, flores, preservación de animales (taxidermia), preservación de documentos y libros antiguos y finalmente está el campo de los alimentos, siendo una de las empresas más importantes Nutripac S.A. con sus plantas en Brasil, Argentina y México. Los alimentos liofilizados han tenido un gran auge en proyectos multinacionales con el fin de preparar productos para astronautas, montañistas y comandos militares, pero en la actualidad el mercado se está ampliando al comensal común, gracias a las firmas alimentarias que descubrieron los liofilizados por su sabor intenso, su consistencia crocante y su carácter novedoso.
VENTAJAS Y DESVENTAJAS
La principal ventaja de esta técnica es la calidad superior del producto final. Sin embargo, visto el costo del proceso, la liofilización queda generalmente reservada para productos con un alto valor agregado, semejantes a los productos farmacéuticos o alimentos para bebes y ciertas especies. Una de las causas de este elevado costo es la longevidad del producto procesado. En efecto, la baja presión del proceso y la débil conductividad de los productos liofilizados (debido a la textura porosa) afectan de manera significativa y negativa la transferencia de calor y de masa y por consecuencia la duración de la operación de deshidratación. En la actualidad, varios estudios a escala de laboratorio y planta piloto se realizan con el fin de obtener una mejor comprensión de los detalles de la liofilización
MARCO TEORICO
B. Woinet, J. Andrieu, N, M. Laurent & S.G. Min (1997), liofilizaron un gel de gelatina y observaron y analizaron con un software de análisis de imágenes el tamaño de cristal formado al congelar el gel y determinaron la suma de solutos iónicos tiene una gran influencia en el tamaño de cristal, validaron un modelo matemático.
L. A. Gioielli et al (1998), comprobaron las mínimas alteraciones estructurales en polvos liofilizados de grasa de Babassu sometidos a tratamiento térmico, compararon sus resultados con mezclas de ésta grasa con leche, agua y un aceite comercial, demostraron que la estabilidad térmica depende de la calidad del producto liofilizado.
M. C. Heller, J. F. Carpenter, and T. W. Randolph (1998), aplicaron con éxito un modelo termodinámico para predecir las separaciones de fase en formulaciones crío-concentradas de Proteína Liofilizada, el modelo se basó en el cálculo del potencial químico, concluyeron que en la liofilización la sensibilidad de los coeficientes viriales del modelo no sufrían mayor alteración.
D. Chevalier, A. Le Bail, M. Ghoul (2000), determinaron la importancia de la relación diámetro del alimento – tamaño del cristal en la primera etapa de la liofilización, indicaron que la tasa de congelación se relaciona con el diámetro según una ley de poder, liofilizaron un gel de gelatina para realizar su estudio.
Mohammed Farid (2000), realizó un estudio comparativo entre los procesos de liofilización, secado y congelado con el fin de unificar la teoría de análisis de frontera móvil (MBA).
P.J.A. Sobral, V.R.N. Telis, A.M.Q.B. Habitante, A. Sereno (2001), obtuvieron diagramas de fase para persimmon mediante calorimetría diferencial de barrido (DSC), lo hicieron para liofilizado con alta, media y baja humedad.
D. L. Teagarden, D. S. Baker (2001), evaluaron sistemas co-solventes y no acuosos, utilizados principalmente en liofilización de productos farmacéuticos inyectables, determinaron el incremento de la tasa de solubilidad y de la estabilidad del producto.
J. M. Pardo B (2002) estudio la retención de aromas durante la liofilización de extractos de café, concluyó que la retención de volátiles decrece con el aumento en la concentración inicial de sólidos; la interacción de los volátiles con la matriz que los contiene y su solubilidad tienen mayor influencia en la retención que el tamaño molecular; la pérdida de volátiles es mayor durante la etapa de sublimación e indicó que un modelo basado en difusión no puede predecir esta tendencias.
I. Andriot, J-L Le Quéré, E. Guichard (2003), estudiaron la relación de composición entre café liofilizado y el obtenido tradicionalmente, analizaron la relación método – tiempo, concluyeron que la liofilización permitía la mayor retención de volátiles y sabor que el método tradicional.
S. Khalloufi, J-L. Robert et C. Ratti (2004) realizaron estudios sobre la simulación matemática de la cinética de la liofilización, utilizaron el método numérico de elementos

ARTICULOS
1.       LIOFILIZACIÓN DE PITAHAYA AMARILLA (Selenicereus megalanthus)

Alfredo A. AYALA A.1;* Liliana SERNA C.2; Esmeralda S. MOSQUERA V.1
1 Escuela de Ingeniería de Alimentos. Facultad de Ingeniería. Universidad del Valle, Sede Meléndez. Calle 13 No 100-00, Edificio 338, 2º piso, Espacio 2023. Cali, Colombia.
2 Departamento de Ingeniería. Facultad de Ingeniería y Administración. Universidad Nacional de Colombia, Sede Palmira. Carrera 32 Chapinero, Vía Candelaria, Bloque 25, 3º piso, oficina 3170. Palmira, Valle del Cauca, Colombia

RESUMEN

 La liofilización es una alternativa de interés como método de conservación de alimentos, la cual permite prolongar el tiempo de vida útil manteniendo significativamente las propiedades físicas y fisicoquímicas relacionadas con su calidad. El objetivo de este trabajo fue evaluar el efecto de la liofilización y la osmoliofilización sobre las cinéticas de congelación y de secado, la actividad de agua, el volumen, la porosidad y la capacidad de rehidratación en rodajas de pitahaya amarilla (Selenicereus megalanthus). Como pretratamiento osmótico a la liofilización (osmoliofilización), las rodajas se sumergieron en una solución de sacarosa con 55 ºBrix a 25ºC; se congelaron a -35°C, la sublimación se llevó a presión de vacío de 8 Pa y el secado se realizó desde -35 hasta 35°C. Los resultados de los tratamientos evidenciaron, al final del proceso, diferencias significativas en la porosidad, volumen y capacidad de rehidratación (que fueron mayores para el tratamiento liofilizado), mientras que la cinética de secado y la actividad de agua no presentaron diferencias significativas. El tratamiento de liofilización fue adecuado para la conservación de rodajas de pitahaya amarilla, ya que permitió reducir la actividad de agua por debajo de 0,4; conservó significativamente el volumen y presentó alta capacidad de rehidratación.

2. LIOFILIZACIÓN DE CARAMBOLA (Averrhoa carambola L.)  OSMODESHIDRATADA
Lina M. Grajales-Agudelo,  William A. Cardona-Perdomo,  Carlos E. Orrego-Alzate
RESUMEN

La carambola (Averrhoa carambola L.) se trató osmóticamente con una solución hipertónica de sacarosa como  pretratamiento al secado por sublimación con el fin de retirarle un 30% de humedad y concentrarla hasta un 40%  de sólidos solubles. Se analizó la influencia de la velocidad de congelación y de calefacción en el potencial de  rehidratación de la fruta liofilizada, el cual presentó su valor más alto para la velocidad de congelación menor y  para la velocidad de calefacción más alta. Se realizó un análisis sensorial comparativo de la carambola  rehidratada y la fruta osmodeshidratada, teniendo en cuenta pruebas afectivas y discriminativas, detectándose pérdida de los componentes responsables del aroma y sabor durante el proceso de liofilización.

No hay comentarios:

Publicar un comentario